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I. INTRODUCTION

Case bond liner systems for solid rocket motors have been formulated in a number of ways to

niaximi,., their design properties when interfaced with a propellant. Since a successful case
bond liner system is one that fails cohesively in the propellant, any other mode ot failure in
the system is unacceptable. The chemistry of the system is quite complex, and an attempt is
made in this report to describe the delicate role of each process in constructing a case bond

and the limitations inherent in these processes.
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II. BACKGROUND

Binders for composite solid propellants are chosen for particular. property requirements. The

major requirement is to obtain the optimum specific impulse from a composition of !he

binder, which is a hydroxy-terminated polybutadiene (-TPB) and a diisocyanate curing agent,
in combination with ammonium perchlorate and aluminum. This binder system has been
extensively investigated to elucidate factors influencing mechanical behavior and to establish
the failure criteria of solid composite propellants. The ideal binder is chosen to maximize the
propellant content, have a high fuel value, and exhibit specific mechanical properties after

cure.

HTPBs combine the high fuel value of hydrocarbons with the , .;J -. echanical properties of

polymers cured through terminal functional groups. These HTPi ,joiq'-t-mers arfe used as

fuel binders to yield a variety of propellant compositions when cured %' iW C!..Jo0S

diisocyanate compounds. The use of the HTPBs permits the fornuw'!tion of comro4ite
propellants of very high specific impulse by optimizing the ratios of the organic biidc, the

ammonium perchlorate oxidizer, and the aluminum metal. Snce these piopeila Ls are

formulated with a very high volumetric loading of oxidizer and metal powder, great reliance is
placed on the binder to obtain the best niechanicai properties (Ref. 1). Because side reactions

occur during cure of this binder system, stringent control duxing processing of the propellants
is required to ensure reproducible mechanical properties. The use of HTPBs as propellant

binders has been treated extensively in the literature. The chemical structure of the HITB
resin, commercially available as R-45M, is depicted in Figure 1.

• C H C C H 2 ) - O H

HO (CH2  CH2) - (CH2 -CH)- (CH2  0.6

0.2 j0.2

CH CH2  n

n 50
MICROSTRUCTURE (all polymers):
TRANS-1,4 UNSATURATION 60%
CIS-1,4 UNSATURATION 20%
VINYL-i,2 UNSATURATION 20%

Figure 1. Structure of R-45M
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Because of the method of manufacture and the nature of the HTPB molecule, it is susceptible
to oxidation and must be stabilized to allow adequate shelf life. In the preser. e of oxygen and
native peroxide contaminants, the HTPB can undergo a variety of reactions, as shown in
Figure 2 (Ref. 2).

NATIVE
PEROXIDE\[,AT, oIJ F o H ]

- CA. . . . O  CHAIN

+ HYOROPEROXIDE SO
+x

02 OH
-2bHO ...... OH

CROS LININGIINCREASED 
FUNCTIONALITY

AM'v

Figure 2. Chemical Behavior of H[PB (R-45M) to Oxidation

The generation of hydroperoxides leads to the formation of acids through chain scissioning
and to cross-linking or increasing hydroxyl functionality through different mechanisms. Thus,
antioxidants are added to reduce this susceptibility to oxidative degradation. In this instance,
a hindered phenol, AO-2246, is used to stabilize the HTPB:

CH3  CH3

Q -CH _ Q

t-butyl OH OH t-butly

A0-2246

Figure 3 (Ref. 3) exhibits an experiment designed to show the effect of oxidation on HTPB
after the inhibitor is depicted.

For an adequately stabilized HTPB. the only reaction taking place is the destruction of
antioxidant, described as an induction period in Figure 3. After the antioxidant is consumed,
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Figure 3. Effect of Oxidation on Molecular Weight Distribution of HTPB (R-45M)

rapid peroxide formation and polymerization take place. The change in molecular weight
distribution reveals the effect of oxidation on HTPB. An increase in functionality leads to an
increase in homopolymerization, resulting in increased viscosity and eventually increased
cross-link density, all of which affect pot life and subsequent aging characteristics. Thus, it is
important to stabilize the IITPB binder early in the production proc -ss ,hile assuring that the
antioxidant does not interfere with subsequent processes. Commercially available R-45M has
an exceptionally low viscosity (50 ± 10 Ps @ 30°C), permitting processing of propellants with
higher solid loadings. The functionality of R-45M (2.2-2.4 hydroxyl groups per molecule)
permits cross-linking by readily available difunctional isocyanates. Ultimate propellant
mechanical properties are directly related to the initial isocyanate/hydroxyl ratio (NCO/OH)
(Ref. 4). In this particular formulation, the ratio is < 1 (-0.8). Sensitivity to this ratio is
illustrated in Figure 4, where a specific propellant modulus is desired (Ref. 5).

In addition to the reactive components just described, the propellant formulation includes
antioxidants to prevent the homopolymerization of the R-45M, an inert plasticizer to reduce
the viscosity of the propellant system, and a bonding agent that enhances the oxidizer-to-
binder bonding properties.
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Figure 4. Correlation of R-45M Functionality with Propellant NCO/OH Requirement

The single most important contributor to problems in the case bond liner system is moisture.

Since diisocyanates react with water, its presence can upset the stoichiometries used and

thereby affect end-use properties.

With this background, one can attempt to follow the progression of events leading to the

system currently under study.
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!1l. DISCUSSION

The propellant formulation described in section II is designed to have a working life long

enough to be cast many hours after the propellant is made. The propellant is then allowed to

cure slowly to its ultimate properties.

Rocket motor casings are usually lined with an insulation layer, which is mainly a protection

for the case. This layer is an ethylcne-propylene-diene clastomer, more commonly called an
EPDM rubber.

Originally, the propellant was cast into the EPDM-lineO case. However, the slow-curing
propellant enabled propellant components to migrate into the insulation, resulting in a soft
layer at the interfacial region (Ref. 4). Subsequently, a liner system was developed for

placement bet*,.cn the insulation and the propellant to prevent this migration from occurring.

This liner system appeared to be a combination of R-45M with a diisocyanate curing agent
and a carbon filler for strength. This foimulation ued an excess of diisocyanate to R-45M
and was designed to act as an adhesive between the insulation and the propellant. Further
work revealed that the plasticizer component of the propellant composition migrated through

this liner and even into the insulation. One solution to this problem was to incorporate the
migrating species into the liner formulation to closely maintain an equilibrium condition at

the surface while curing was taking place. This incorporation required a corresponding

increase in the filler content to maintain the liner viscosity properties. Still, the liner insulator

interface continued to show migration with deleterious effects on the liner chemistry (Ref. 6).

A subsequent approach described the application of a barrier coating to the insulator that
would not pass any of the interacting components mentioned. This barrier coat would be

sufficiently designed to inhibit any migration from the contacting liner, while at the same time
providing a compatible surface for adhesion to the liner. The result of all this activity was a

case bond liner system assembled in the following way (see Figure 5) (Ref. 7).

The case adhesive insulator system is prepared separately, and the insulator surface is cleaned

and dried under thermal vacuum conditions to limit the accessibility of water to the moisture-

sensitive layers yet to be applied. In the manufacturing operation, the subsequent layers are

applied according to a predetermined set of specifications.

he chemistry of the accompanying steps is rather fascinating.
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Insulator

Primer

Barrier

Interfacial Zones Liner

1' Propellant

Figure 5. Schematic of Case Bond Liner Propellant System

The insulator surface :s treated with a primer that is compatible with both the insulator
material and the barrier material to provide good adhesion between those layers. The barrier
coating is a polyurethane-based, tolviene diisocyanate-terminated prepolymer filled with
titanium dioxide and is cured by ambient moisture. The barrier depends on the temperature
and relative humidity conditions for optimum cure. A chart describing these conditions is

shown in Figure 6.

As one can see, the temperature-humidity conditions are very important in attaining the
proper cure.* When the barrier coating is "sufficiently" cured, the liner is applied. The liner

consists of a mixture of HTPB, dimeryl diisocyanate (DDI) curing agent , dioctyl sebacate

(DOS) plasticizer, carbon black filler, and an aziridine-based bonding agent, HX-868. This

mixture is applied as a spray coating in 11,1.trichloroethane. The propellant is then cast into
the motor casing.

Although this sequence of steps describes one common process for a propellant binder

system, and each step by itself can be controlled, when taken together, the processing times

;R. 13rctzlaff and R. T Sugihara, Cure Kinetics of Chemglaze Z-451 Po'yurethane with 9984 Co-reactive
Catalyst, AlM-89(4533-01)-22 The Aerospace Corp., El Scgundo, CA (14 April 1989).
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and temperatures for each layer can be crucial to the ultimate bonding properties at the
interfaces between the layers.
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IV CHEMISTRY

The barrier layer is a commercial moisture-curing polyurethane containing titanium dioxide

filler and an accelerator and is spray coated to a I mil thickness. This layer is then allowed to

cure under ambient conditions from I h to 7 days (according to the manufacturer). Note that

this material is formulated as an abrasion- and solvent.-resistant topcoat when fully cured.
Figure 6 displays the optimum conditions of cure for the intended purpose of this material.

Curing proceeds by diffusion of ambient moisture into the layer, reacting with the tolylene

diisocyanate-terminated prepolymer. If one wishes to apply multiple coats of this layer, it is

important to do so within a very short time, since a cured layei becomes impenetrable even to

an identical coating (see Table 1).

Table 1. Reactive Barrier Components

DESIGNATION STRUCTURE

0 H
Z-451 (SEGMENT) 4 0 -C-- N-9-1-CH3

NCO

MOISTURE H20

CATALYST (9984) [CHIN-(CHCHOH CH)2! 2 + ICH2N-(CH2CHNH 2CH3)2l2

When the barrier layer is "sufficiently" cured, the liner is applied. The reacting species in the
liner are the HTPB and an excess of DDI curing agent. The DDI curing agent differs from its

predecessors in two important ways. First, it has a 36-carbon chain between isocyanate

groups and thus is more moisture resistant and less likely to hydrolyze. Second, being a much

larger molecule, it is less prone to diffuse out of the liner, The purpose of the plasticizer.

DOS, in the liner formulation is to inhibit the diffusion of DOS from the propellant into the

liner. Thus, an equilibrium condition is set up for the DOS at the propellant-liner interface so

that the interfacial chemistry is not affected adversely (see Thble 2).

In addition to the components listed in sable 2, an aziridine bonding agent, HX-868, appears

to have been added because of similar diffusion phenomena. The propellant formulation

contains HX-752, a bonding agent of the same chemical family that is present to aid the

bonding between the oxidizer (AP) and the binder (R-45M). Since diffusion is also possible

15



Table 2. Reactive Liner Components

DESIGNATION STRUCTURE

HTPB HO OH

n

DDI OCN-(CHz)36-NCO

HX-88 II

II

0

with this bonding agent, a similar rationale to that used for the plasticizer problem appears to

have been employed (see Table 3).

Table 3. Reactive Biuder Components

DESIGNATION STRUCTURE

I..TPB VOQ \ 'OH

--n

DDI OCN-(CH 2)3s-NCO

0HX-752 OZ N-o 1 0

. C--N:
J-DN-C 0

One can appreciate, because of a necessarily slow propellant cure rate, that the interdiffusion
rates at the ,various layer interfaces are extremely important to the che~nistry of the liner in the
formation of adequate adhesive bonds.
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The barrier chemistry results in the formation of a polymer derivative from the reaction of
Z-451 with water. This is a slow reaction requiring an accelerator and is dependent on the

diffusion of ambient moisture (see Table 1.)

Since interdiffusion is thought to play an important role in the adhesion of the liner to the
barrier, allowing the barrier to cure completely would inhibit this interdiffusion and reduce
interfacial bonding.

The liner formulation uses an isocyanate-to-hydroxyl ratio (NCO/OH) greater than 1 partly to
compensate for nascent moisture present. However, more important, this ratio allows access

of R-45M propellant binder to the unreacted isocyanate groups, thus increasing the bonding
properties at this interface (see Table 2). Therefore, liner cure at these ratios should not be

allowed to proceed to the point where cross-linking in the liner interferes with interdiffusion

by the propellant binder components.

The propellant binder formulation described previously uses an isocyanate-to-hydroxyl ratio
(NCO/OH) less than 1 to satisfy propellant mechanical properties. The remaining reactive

component of the propellant is the bonding agent HX-752. This agent is one of a class of
multifunctional aziridine compounds originally used as cross-linking agents in carboxyl-

terminated polybutadiene (CTPB) propellant systems. Currently, these compounds are used
in highly filled HTPB propellants to prevent blanching. Although the chemistry is not well
understood, HX-752 apparently interacts with the ammonium perchlorate oxidizer, permitting
better molecular association between the HTPB and the filler particles, and eliminates the

void formation that can occur in its absence. Recently, evidence for the interaction of AP
with HX-752 was shown by infrared spectrometry (Figure 7) (Ref. 8).

In Figure 7, one can easily observe that the spectra of AP and HX-752 are nut: simply additive

but include new absorption peaks. This is probably due to homopolymerization of the
HX-752 as the result of an acid-catalyzed ring opening of the aziridine system from residual

moisture content in the A. (About 0.002% water is present on the surface of AP

crystals-ten times as much as in the internal structure).

In Table 2, the presence of HX-868 appears to serve two purposes: to help control the

dynamics of migration of HX-752 and to participate in the surface reaction with the oxidizer

particles. HX-752 and HX-868 react through ring-opening homopolymerization, which would

also assist in the interfacial bonding between the propellant and the liner (see Reference 7,

p. 75).
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i. .ie can observe by analyzing the formulation of the propellant liner insulator system, the
. r surface chemistry is v'ery complex, and a great deal of attention must be paid to the

proesses by which these layers are brought together.

AP

AP

LU

CnHX-752 HX-752

I~~~ I _ __ _

1800 1600 1400 800 700 600

WAVENUMBER (cm)
Figure 7. Infrared Spectra of A, HX-752, and AP + HX-752
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V. CONCLUSIONS

'The case bond liner system has evolved over time into an increasingly complex set of chemical
formulations that can make a specific source of failure nearly indeterminable. The barrier
material is designed as a topcoat but is being used as an interlayer between the insulation and
the liner. As such, it must not only provide barrier properties to prevent diffusion from
adjacent layers but must provide a surface compatible for adhesion to the liner. Thus, it
appears to be very important to carefully control curing conditions of the barrier for optimum
interfacial adhesion. Since the liner and propellant formulations both contain R-45M, the rate
of cure of the barrier can impact the interfacial bonding at both the barrier-liner interface and
the liner-propellant interface without necessarily affecting the ultimate mechanical properties
of either liner or propellant. This is due to the relative difference in diffusion rates vs the rate
of cure of R-45M, resulting in a change in the chemistry at the liner-propellant interface that
can lead to weak interracial bonding. The current state of case bond liner systems suggests
that in the absence of invasive moisture, the rate of cure of each of the layers should be
known in order to define the degree of cure acceptable for adequate bonding in the interfacial
zones. To assure more reliable bonding, it is strongly recommended that the specification
limits for the processes employed in these systems be tightened. Studies involving those
variables found to be the most sensitive should be addressed initially. With the present
multiprocess systems, the more that the parameters involved approach their specification
limits during processing, the more likely the potential for failure becomes statistically
significant. Even though each process may be within specification, the existence of more than
one processing variable that is operating near its specification limit can ine overlooked. This
is where the overall process is in jeopardy. Fortunately, this system is very forgiving and
should give acceptable results much of the time. However, a narrowing of the processing
parameters based on the degree of cure should ensure good liner interfacial properties.
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